The migration of the crustal deformation peak area in the eastern Himalayan Syntaxis inferred from present-day crustal deformation and morpho-tectonic markers (2024)

Table of Contents
Abstract References References

Abstract

The present-day Global Positioning System (GPS) velocity field shows that the Indian Plate is not a complete rigid block, as its northeastern corner has been torn off and clockwise rotating relative to the main part. With the updated GPS velocity data, the Euler vector of the northeastern corner of the Indian Plate relative to the stable main plate is deduced as (89.566 ± 0.06° E, 26.131 ± 0.05° N, 1.34 ± 0.11°/Myr). The peak area of the present-day crustal deformation is located in the Chayu deformation belt with the compressional dilation strain rate over 160 nanostrain/yr. However, the Namche-Barwa Syntaxis with the massive crustal thickening and intense surface erosion is generally considered to be the previous locus of the strongest compressional stress in the Eastern Himalayan Syntaxis over long geological timescales. Thus, there is a discrepancy between the previous and present-day crustal deformation peak areas. We argue the migration of the crustal deformation peak area with a total distance of about 120 km and ascribe it to the variation of stress conditions caused by northeast India's clockwise rotation.

References

[1]

H.K. Gupta, The deadly Latur earthquake, Science 262 (1993) 1666-1667, https://doi.org/10.1126/science.262.5140.1666.

[2]

R. Bilham, F. Blume, R. Bendick, V.K. Gaur, Geodetic constraints on the translation and deformation of India: implications for future great Himalayan earthquakes, Curr. Sci. 74 (3) (1998) 213-229.

[3]

J. Paul, R. Bürgmann, V.K. Gaur, R. Bilham, K.M. Larson, M.B. Ananda, S. Jade, M. Mukal, T.S. Anupama, G. Satyal, D. Kumar, The motion and active deformation of India, Geophys. Res. Lett. 28 (4) (2001) 647-650, https://doi.org/10.1029/2000GL011832.

[4]

P. Vernant, R. Bilham, W. Szeliga, D. Drupka, S. Kalita, A.K. Bhattacharyya, V.K. Gaur, P. Pelgay, R. Cattin, T. Berthet, Clockwise rotation of the brahmaputra valley relative to India: tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau, J. Geophys. Res.-Solid Earth 119 (8) (2014) 6558-6571, https://doi.org/10.1002/2014jb011196.

[5]

T.D. Gupta, F. Riguzzi, S. Dasgupta, B. Mukhopadhyay, S. Roy, S. Sharma, Kinematics and strain rates of the eastern Himalayan syntaxis from new GPS campaigns in northeast India, Tectonophysics 655 (1) (2015) 15-26, https://doi.org/10.1016/j.tecto.2015.04.017.

[6]

P. Barman, S. Jade, T.S. Shrungeshwara, A. Kumar, S. Bhattacharyya, J.D. Ray, S. Jagannathan, W.M. Jamir, Crustal deformation rates in Assam valley, Shillong Plateau, eastern Himalaya, and Indo-Burmese region from 11 years (2002–2013) of GPS measurements, Int. J. Earth Sci. 106 (2017) 2025-2038, https://doi.org/10.1007/s00531-016-1407-z.

[7]

W.J. Gan, P.Z. Zhang, Z.K. Shen, Z.J. Niu, M. Wang, Y.G. Wang, D.M. Zhou, J. Cheng, Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements, J. Geophys. Res.-Earth Surf. 112 (B08416) (2007) 1-14, https://doi.org/10.1029/2005JB004120.

[8]

L. Zhang, S.M. Liang, X. Yang, W.J. Gan, Landscape evolution of the Eastern Himalayan Syntaxis based on basin hypsometry and modern crustal deformation, Geomorphology 355 (2020) 107085, https://doi.org/10.1016/j.geomorph.2020.107085.

[9]

W.P. Burgess, A. Yin, C.S. Dubey, Z.-K. Shen, T.K. Kelty, Holocene shortening across the main frontal thrust zone in the eastern Himalaya, Earth Planet Sci. Lett. 357 (2012) 152-167, https://doi.org/10.1016/j.epsl.2012.09.040.

[10]

M. Devachandra, B. Kundu, J. Catherine, A. Kumar, V.K. Gahalaut, Global positioning system (GPS) measurements of crustal deformation across the Frontal Eastern Himalayan Syntaxis and seismic-hazard assessment, Bull. Seismol. Soc. Am. 104 (3) (2014) 1518-1524, https://doi.org/10.1785/0120130290.

[11]

A. Curveur-Coudurier, P. Tapponnier, E. Okal, J. Van der Woerd, E. Kali, S. Choudhury, S. Baruah, M. Etchebes, C. Karakas, A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis, Earth Planet Sci. Lett. 531 (2020) 115928, https://doi.org/10.1016/j.epsl.2019.115928.

[12]

L. Ding, D.L. Zhong, A. Yin, P. Kapp, T.M. Harrison, Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa), Earth Planet Sci. Lett. 192 (3) (2001) 423-438, https://doi.org/10.1016/S0012-821X(01)00463-0.

[13]

S.M. Liang, W.J. Gan, C.Z. Shen, G.R. Xiao, J. Liu, W.T. Chen, X.G. Ding, D.M. Zhou, Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements, J. Geophys. Res.-Solid Earth 118 (2013) 5722-5732, https://doi.org/10.1002/2013JB010503.

[14]

G. Zheng, H. Wang, T.J. Wright, Y.D. Lou, R. Zhang, W.X. Zhang, C. Shi, J.F. Huang, N. Wei, Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements, J. Geophys. Res.-Solid Earth 112 (11) (2017) 9290-9312, https://doi.org/10.1002/2017JB014465.

[15]

M. Wang, Z.K. Shen, Present-Day crustal deformation of continental China derived form GPS and its tectonic implications, J. Geophys. Res.-Solid Earth 125 (2) (2020), e2019JB018774, https://doi.org/10.1029/2019JB018774.

[16]

H.Z. Jian, L.F. Wang, W.J. Gan, K.L. Zhang, Y.C. Li, S.M. Liang, Y.H. Liu, W.Y. Gong, X.Z. Yin, Geodetic model of the 2017 Mw 6.5 Mainling earthquake inferred from GPS and InSAR data, Rem. Sens. 11 (24) (2019) 2940, https://doi.org/10.3390/rs11242940.

[17]

R.W. King, Y. Block, Documentation for the GAMIT GPS Analysis Software, Release 10.2, Report, Massachusetts Institute of Technology, Cambridge, MA, 2005.

[18]

T.A. Herring, R.W. King, S.C. McClusky, GAMIT Reference Manula, GPS Analysis at MIT, Release 10.4, Massachusetts Institute of Technology, Cambridge, MA, 2010.

[19]

T.A. Herring, R.W. King, S.C. McClusky, GAMIT Reference Manual, Global Kalman Filter VLBI and GPS Analysis Program, Release 10.4, Massachusetts Institute of Technology, Cambridge, MA, 2010.

[20]

E. Calais, M. Vergnolle, J. Déverchère, V. San'kov, A. Lukhnev, S. Amarjargal, Are post-seismic effects of the M = 8.4 Bolnay earthquake (1905 July 23) still influencing GPS velocities in the Mongolia-Baikal area? Geophys. J. Int. 149 (1) (2002) 157-168, https://doi.org/10.1046/j.1365-246X.2002.01624.x.

[21]

J.C. Savage, M. Lisowski, Viscoelastic coupling model of the san Andreas fault along the big bend, southern California, J. Geophys. Res.-Solid Earth 103 (B4) (1998) 7281-7292, https://doi.org/10.1029/98JB00148.

[22]

F.F. Pollitz, M. Nyst, A physical model for strain accumulation in the San Francisco Bay Region, Geophys. J. Int. 160 (1) (2005) 302-317, https://doi.org/10.1111/j.1365-246X.2005.02433.x.

[23]

W. Thatcher, Cyclic deformation related to great earthquakes at plate boundaries, R. Soc. N. Z. Bull. 24 (1986) 245-272, https://doi.org/10.1029/JB089iB05p03087.

[24]

F.F. Pollitz, I.S. Sacks, Modeling of postseismic relaxation following the great 1957 earthquake, southern California, Bull. Seismol. Soc. Am. 82 (1) (1992) 454-480.

[25]

J.T. Freymueller, S.C. Cohen, H.J. Fletcher, Spatial variations in present-day deformation, Kenai Peninsula, Alaska, and their implications, J. Geophys. Res.-Solid Earth 105 (B4) (2000) 8079-8101, https://doi.org/10.1029/1999JB900388.

[26]

P. Banerjee, R. Burgmann, B. Nagarajan, E.V. Apel, Intraplate deformation of the Indian subcontinent, Geophys. Res. Lett. 35 (18) (2008) L18301, https://doi.org/10.1029/2008GL035468.

[27]

S. Jade, T.S. Shrungeshwara, K. Kireet, P. Choudhury, R.K. Dumka, H. Bhu, India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015, Sci. Reports 7 (1) (2017) 11439, https://doi.org/10.1038/s41598-017-11697-w.

[28]

P. Wessel, D. Bercovici, Interpolation with splines in tension: a green's function approach, Math. Geol. 30 (1) (1998) 77-93, https://doi.org/10.1023/A:1021713421882.

[29]

M. Taylor, A. Yin, Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere 5 (3) (2009) 199-214, https://doi.org/10.1130/GES00217.1.

[30]

L. Ding, D.L. Zhong, The tectonic evolution of the eastern Himalayan syntaxis since the collision of the Indian and Eurasian plates, Chin. J. Geol. 48 (2) (2013) 317-333, https://doi.org/10.3969/j.issn.0563-5020.2013.02.001 (in Chinese with English).

[31]

J.-P. Burg, P. Nievergelt, F. Oberli, D. Seward, P. Davy, J.-C. Maurin, Z.Z. Diao, M. Meier, The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding, J. Asian Earth Sci. 16 (2–36) (1998) 239-252, https://doi.org/10.1016/S0743-9547(98)00002-6.

[32]

L. Ding, D.L. Zhong, Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet, Sci. China Earth Sci. 42 (5) (1999) 491-505, https://doi.org/10.1007/BF02875243.

[33]

I.J. Larsen, D.R. Montgomery, Landslide erosion coupled to tectonics and river incision, Nat. Geosci. 5 (7) (2012) 468-473, https://doi.org/10.1038/ngeo1479.

[34]

R.J. Stewart, B. Hallet, P.K. Zeitler, M.A. Malloy, C.M. Allen, D. Trippett, Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya, Geology 36 (9) (2008) 711-714, https://doi.org/10.1130/G24890A.1.

[35]

K.A. Lang, K.W. Huntington, D.R. Montgomery, Erosion of the tsangpo gorge by megafloods, eastern Himalaya, Geology 41 (9) (2013), https://doi.org/10.1130/G34693.1.

[36]

E.Q. Wang, L.Z. Chen, Z.L. Chen, Tectonic and climatic element-controlled evolution of the Yalungzangbu river in south Tibet, Quat. Sci. 22 (4) (2002) 365-373, https://doi.org/10.3321/j.issn:1001-7410.2002.04.009 (in Chinese with English).

[37]

M.K. Clark, L.M. Schoenbohm, L.H. Royden, K.X. Whipple, B.C. Burchfiel, X. Zhang, W. Tang, E. Wang, L. Chen, Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns, Tectonics 23 (1) (2004) TC1006, https://doi.org/10.1029/2002TC001402.

[38]

M.K. Clark, M.A. House, L.H. Royden, K.X. Whipple, B.C. Burchfiel, X. Zhang, W. Tang, Late cenozoic uplift of southeastern Tibet, Geology 33 (6) (2005) 525-528, https://doi.org/10.1130/G21265.1.

[39]

J. Liu, L. Zeng, L. Ding, P. Tapponnier, Y. Gaudemer, L. Wen, K.J. Xie, Tectonic geomorphology, active tectonics and lower crustal channel flow hypothesis of the southeastern Tibetan Plateau, Chin. J. Geol. 44 (4) (2009) 1227-1255 (in Chinese with English abstract).

[40]

R. Armijo, P. Tapponnier, T. Han, Late cenozoic right-lateral strike-slip faulting in southern Tibet, J. Geophys. Res.-Solid Earth 94 (1989) 2787-2838, https://doi.org/10.1029/JB094iB03p02787.

[41]

J. Song, F.T. Tang, Z.H. Deng, G.R. Xiao, W.T. Chen, Late Quaternary movement characteristic of Jiali fault in Tibetan plateau, Acta Sci. Nauralium Univ. Pekin. 49 (6) (2013) 973-980 (in Chinese with English abstract).

[42]

J. Ni, J.E. York, Late cenozoic tectonics of the Tibetan plateau, J. Geophys. Res.-Solid Earth 83 (B11) (1978) 5377-5384, https://doi.org/10.1029/JB083iB11p05377.

[43]

P. Molnar, P. Tapponnier, Active tectonics of Tibet, J. Geophys. Res. Atmos. 83 (B11) (1978) 5361-5376, https://doi.org/10.1029/JB083iB11p05361.

[44]

H.Y. Lee, S.L. Chung, J.R. Wang, D.J. Wen, C.H. Lo, T.F. Yang, Y.Q. Zhang, Y.W. Xie, T.Y. Lee, G.Y. Wu, J.Q. Ji, Miocene Jiali faulting and its implications for Tibetan tectonic evolution, Earth Planet Sci. Lett. 205 (2003) 185-194, https://doi.org/10.1016/S0012-821X(02)01040-3.

[45]

T.H. Lin, C.H. Lo, S.L. Chung, F.J. Hsu, M.W. Yeh, T.Y. Lee, J.Q. Ji, Y.Z. Wang, D.Y. Liu, 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: implications for crustal deformation around the Eastern Himalayan Syntaxis, J. Asian Earth Sci. 34 (2009) 674-685, https://doi.org/10.1016/j.jseaes.2008.10.009.

[46]

L. Zhang, S.M. Liang, X.P. Yang, W.J. Gan, C.L. Dai, Geometric and kinematic evolution of the Jiali fault, eastern Himalayan, J. Asian Earth Sci. 212 (1) (2021) 104722, https://doi.org/10.1016/j.jseaes.2021.104722.

[47]

D. Seward, J.-P. Burg, Growth of the Namche barwa syntaxis and associated evolution of the tsangpo gorge: constraints from structural and thermochronological data, Tectonophysics 451 (1–4) (2008) 282-289, https://doi.org/10.1016/j.tecto.2007.11.057.

[48]

E. Tillotson, The great Assam earthquake of August 15, 1950, Nature 167 (4239) (1951) 128-130, https://doi.org/10.1038/167128a0.

[49]

Z.J. Guo, Z.J. Ma, Research on Huge Earthquakes in China, Seismological Press, Beijing, 1988 (in Chinese with English abstract).

[50]

B.K. Li, G.L. Diao, X.W. Xu, Y.G. Wan, X.D. Feng, L.Y. Zou, C.L. Miao, Redetermination of the source parameters of the Zayü, Tibet M8.6 earthquake sequence in 1950, Chin. J. Geophys. 58 (11) (2015) 4254-4265, https://doi.org/10.6038/cjg20151130.

[51]

A. Ben-Menahem, E. Aboodi, R. Schild, The source of the great Assam earthquake-an interplate wedge motion, Phys. Earth Planet. In. 9 (4) (1974), https://doi.org/10.1016/0031-9201(74)90056-9.

[52]

W.P. Chen, P. Molnar, Seismic moments of major earthquakes and the average rate of slip in central Asia, J. Geophys. Res.-Solid Earth 82 (20) (1977) 2945-2969, https://doi.org/10.1029/JB082i020p02945.

[53]

I. Bondár, D. Storchak, Improved location procedures at the, Int. Seismol. Centre. Geophys. J. Int. 186 (3) (2011) 1220-1244, https://doi.org/10.1111/j.1365-246X.2011.05107.x.

[54]

J.-P. Avouac, P. Tapponnier, Kinematic model of active deformation in central Asia, Geophys. Res. Lett. 20 (10) (1993) 895-898, https://doi.org/10.1029/93GL00128.

[55]

P.Z. Zhang, Z.K. Shen, M. Wang, W.J. Gan, R. Bürgmann, P. Molnar, Q. Wang, Z.J. Niu, J.Z. Sun, J.C. Wu, H.R. Sun, X.Z. You, Continuous deformation of the Tibtan Plateau from global positioning system data, Geol Soc. Am. 32 (9) (2004) 809-812, https://doi.org/10.1130/G20554.1.

The migration of the crustal deformation peak area in the eastern Himalayan Syntaxis inferred from present-day crustal deformation and morpho-tectonic markers (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Rev. Leonie Wyman

Last Updated:

Views: 6197

Rating: 4.9 / 5 (79 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Rev. Leonie Wyman

Birthday: 1993-07-01

Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

Phone: +22014484519944

Job: Banking Officer

Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.